
–1–

Deconvolution Signal ModelsDeconvolution Signal Models
• Simple or Fixed-shape regression (previous talks):

★ We fixed the shape of the HRF — amplitude varies
★ Used -stim_times to generate the signal model
(AKA the “ideal”) from the stimulus timing

★ Found the amplitude of the signal model in each
voxel — solution to the set of linear equations = β weights

• Deconvolution or Variable-shape regression (now):
★ We allow the shape of the HRF to vary in each
voxel, for each stimulus class

★ Appropriate when you don’t want to over-
constrain the solution by assuming an HRF shape

★ Caveat : need to have enough time points during
the HRF in order to resolve its shape (e.g., TR ≤ 3 s)

–2–

Deconvolution: Pros & Cons (+ & –)
+ Letting HRF shape varies allows for subject and
regional variability in hemodynamics
+ Can test HRF estimate for different shapes (e.g.,
are later time points more “active” than earlier?)
– Need to estimate more parameters for each
stimulus class than a fixed-shape model (e.g., 4-15
vs. 1 parameter = amplitude of HRF)
– Which means you need more data to get the
same statistical power (assuming that the fixed-shape
model you would otherwise use was in fact “correct”)
– Freedom to get any shape in HRF results can
give weird shapes that are difficult to interpret

–3–

Expressing HRF via Regression Unknowns
• The tool for expressing an unknown function as a
finite set of numbers that can be fit via linear
regression is an expansion in basis functions

★ The basis functions ψq(t) & expansion order p are known
o Larger p ⇒ more complex shapes & more parameters

★ The unknowns to be found (in each voxel) comprises the
set of weights βq for each ψq(t)

• β weights appear only by multiplying known values,
and HRF only appears in signal model by linear
convolution (addition) with known stimulus timing
• Resulting signal model still solvable by linear regression

h(t) = !
0
"
0
(t) + !

1
"
1
(t) + !

2
"
2
(t) +! = !q" q (t)

q=0

q= p

#

–4–

• Need to describe HRF shape and magnitude with a finite
number of parameters
★ And allow for calculation of h(t) at any arbitrary point in
time after the stimulus times:

• Simplest set of such functions are tent functions
★ Also known as “piecewise linear splines”

T (x) =
1! x for !1 < x < 1

0 for x > 1

"
#
$

time

h

t = 0 t =TR t = 2⋅TR t = 3⋅TR t = 4⋅TR t = 5⋅TR

T
t ! 3 "TR
2 "TR

#
$%

&
'(

3dDeconvolve with “Tent Functions”

r
n
= h(t

n
!"

k
)

k=1

K

= sum of HRF copies

N.B.: cubic splines
are also available

–5–

Tent Functions = Linear Interpolation
• Expansion of HRF in a set of spaced-apart tent functions is the
same as linear interpolation between “knots”

• Tent function parameters are also easily interpreted as
function values (e.g., β2 = response at time t = 2⋅L after stim)
• User must decide on relationship of tent function grid spacing
L and time grid spacing TR (usually would choose L ≥ TR)
• In 3dDeconvolve: specify duration of HRF and number of β
parameters (details shown a few slides ahead)

h(t) = !
0
"T

t

L

#
$%

&
'(
+ !

1
"T

t) L
L

#
$%

&
'(
+ !

2
"T

t) 2 "L
L

#
$%

&
'(
+ !

3
"T

t) 3 "L
L

#
$%

&
'(
+!

time
β0

β1

β2 β3

β4

L 2⋅L 3⋅L 4⋅L 5⋅L0

β5

N.B.: 5 intervals = 6 β weights

“knot” times

h

A

–6–

Tent Functions: Average Signal Change
• For input to group analysis, usually want to compute average
signal change
★ Over entire duration of HRF (usual)
★ Over a sub-interval of the HRF duration (sometimes)

• In previous slide, with 6 β weights, average signal change is
 1/2 β0 + β1 + β2 + β3 + β4 +

1/2 β5

• First and last β weights are scaled by half since they only
affect half as much of the duration of the response
• In practice, may want to use 0⋅β0 since immediate post-
stimulus response is not neuro-hemodynamically relevant
• All β weights (for each stimulus class) are output into the “bucket”
dataset produced by 3dDeconvolve
• Can then be combined into a single number using 3dcalc

–7–

Deconvolution and Collinearity
• Regular stimulus timing can lead to collinearity!

time

β0 β1 β2 β3 β4 β5

β0 β1 β2 β3 β4 β5

β0 β1 β2 β3

 β0
+β4

 β1
+β5

 β2 β3 β0
+β4

 β1
+β5

 β2 β3 β0
+β4

 β1
+β5

 β2 β3Equations
at each data
time point:
Cannot tell
β0 from β4,
or β1 from β5

β0 β1 β2 β3 β4 β5

HRF from
stim #1

stim #1

Tail of HRF
from #1 overlaps
head of HRF
from #2, etc

A

–8–

Deconvolution Example - The Data
• cd AFNI_data2

★ data is in ED/ subdirectory (10 runs of 136 images each; TR=2 s)
★ script = s1.afni_proc_command (in AFNI_data2/ directory)

o stimuli timing and GLT contrast files in misc_files/
★ this script runs program afni_proc.py to generate a shell
script with all AFNI commands for single-subject analysis

o Run by typing tcsh s1.afni_proc_command ; then copy/paste
tcsh -x proc.ED.8.glt |& tee output.proc.ED.8.glt

• Event-related study from Mike Beauchamp
★ 10 runs with four classes of stimuli (short videos)

o Tools moving (e.g., a hammer pounding) - ToolMovie
o People moving (e.g., jumping jacks) - HumanMovie
o Points outlining tools moving (no objects, just points) - ToolPoint
o Points outlining people moving - HumanPoint

★ Goal: find brain area that distinguishes natural motions (HumanMovie and
HumanPoint) from simpler rigid motions (ToolMovie and ToolPoint)

Text output from
programs goes to
screen and file

–9–

Master Script for Data Analysis
afni_proc.py \
 -dsets ED/ED_r??+orig.HEAD \
 -subj_id ED.8.glt \
 -copy_anat ED/EDspgr \
 -tcat_remove_first_trs 2 \
 -volreg_align_to first \
 -regress_stim_times misc_files/stim_times.*.1D \
 -regress_stim_labels ToolMovie HumanMovie \
 ToolPoint HumanPoint \
 -regress_basis 'TENT(0,14,8)' \
 -regress_opts_3dD \
 -gltsym ../misc_files/glt1.txt -glt_label 1 FullF \
 -gltsym ../misc_files/glt2.txt -glt_label 2 HvsT \
 -gltsym ../misc_files/glt3.txt -glt_label 3 MvsP \
 -gltsym ../misc_files/glt4.txt -glt_label 4 HMvsHP \
 -gltsym ../misc_files/glt5.txt -glt_label 5 TMvsTP \
 -gltsym ../misc_files/glt6.txt -glt_label 6 HPvsTP \
 -gltsym ../misc_files/glt7.txt -glt_label 7 HMvsTM

• Master script program
• 10 input datasets
• Set output filenames
• Copy anat to output dir
• Discard first 2 TRs
• Where to align all EPIs
• Stimulus timing files (4)
• Stimulus labels

• HRF model
• Specifies that next

lines are options to be
passed to
3dDeconvolve
directly (in this case,
the GLTs we want
computed)

This script generates file proc.ED.8.glt (180 lines), which
contains all the AFNI commands to produce analysis results

into directory ED.8.glt.results/ (148 files)

–10–

Shell Script for Deconvolution - Outline
• Copy datasets into output directory for processing
• Examine each imaging run for outliers: 3dToutcount
• Time shift each run’s slices to a common origin: 3dTshift
• Registration of each imaging run: 3dvolreg
• Smooth each volume in space (136 sub-bricks per run): 3dmerge
• Create a brain mask: 3dAutomask and 3dcalc
• Rescale each voxel time series in each imaging run so that its
average through time is 100: 3dTstat and 3dcalc
★ If baseline is 100, then a βq of 5 (say) indicates a 5% signal change in that

voxel at tent function knot #q after stimulus
★ Biophysics: believe % signal change is relevant physiological parameter

• Catenate all imaging runs together into one big dataset (1360
time points): 3dTcat
★ This dataset is useful for plotting -fitts output from 3dDeconvolve

and visually examining time series fitting
• Compute HRFs and statistics: 3dDeconvolve

–11–

Script - 3dToutcount
set list of runs
set runs = (`count -digits 2 1 10`)
run 3dToutcount for each run
foreach run ($runs)
 3dToutcount -automask pb00.$subj.r$run.tcat+orig > outcount_r$run.1D
end

Via 1dplot outcount_r??.1D
3dToutcount searches for “outliers” in data time series;

You should examine noticeable runs & time points

–12–

Script - 3dTshift
run 3dTshift for each run
foreach run ($runs)
 3dTshift -tzero 0 -quintic -prefix pb01.$subj.r$run.tshift \
 pb00.$subj.r$run.tcat+orig
end

• Produces new datasets where each time series has been
shifted to have the same time origin
• -tzero 0 means that all data time series are interpolated to
match the time offset of the first slice

• Which is what the slice timing files usually refer to
• Quintic (5th order) polynomial interpolation is used

• 3dDeconvolve will be run on these time-shifted datasets
• This is mostly important for Event-Related FMRI studies, where the
response to the stimulus is briefer than for Block designs

• (Because the stimulus is briefer)
• Being a little off in the stimulus timing in a Block design is not likely to
matter much

–13–

Script - 3dvolreg
align each dset to the base volume
foreach run ($runs)
 3dvolreg -verbose -zpad 1 -base pb01.$subj.r01.tshift+orig'[0]' \
 -1Dfile dfile.r$run.1D -prefix pb02.$subj.r$run.volreg \
 pb01.$subj.r$run.tshift+orig
end

• Produces new datasets where each volume (one time point) has been
aligned (registered) to the #0 time point in the #1 dataset
• Movement parameters are saved into files dfile.r$run.1D

• Will be used as extra regressors in 3dDeconvolve to reduce motion artifacts

1dplot -volreg dfile.rall.1D
• Shows movement parameters for all
runs (1360 time points) in degrees and
millimeters
• Very important to look at this graph!
• Excessive movement can make an
imaging run useless — 3dvolreg
won’t be able to compensate

• Pay attention to scale of movements:
more than about 2 voxel sizes in a
short time interval is usually bad

–14–

Script - 3dmerge
blur each volume
foreach run ($runs)
 3dmerge -1blur_fwhm 4 -doall -prefix pb03.$subj.r$run.blur \
 pb02.$subj.r$run.volreg+orig
end

• Why Blur? Reduce noise by averaging neighboring voxels time series

• WhiteWhite curve = Data: unsmoothed
• YellowYellow curve = Model fit (R2 = 0.50)
• GreenGreen curve = Stimulus timing This is an extremely good fit for ER FMRI data!

–15–

Why Blur? - 2
• fMRI activations are (usually)

blob-ish (several voxels across)
• Averaging neighbors will also

reduce the fiendish multiple
comparisons problem
★ Number of independent “resels” will be smaller than

number of voxels (e.g., 2000 vs. 20000)
• Why not just acquire at lower resolution?

★ To avoid averaging across brain/non-brain interfaces
★ To project onto surface models

• Amount to blur is specified as FWHM
 (Full Width at Half Maximum) of spatial
 averaging filter (4 mm in script)

–16–

Script - 3dAutomask
create 'full_mask' dataset (union mask)
foreach run ($runs)
 3dAutomask -dilate 1 -prefix rm.mask_r$run pb03.$subj.r$run.blur+orig
end
get mean and compare it to 0 for taking 'union'
3dMean -datum short -prefix rm.mean rm.mask*.HEAD
3dcalc -a rm.mean+orig -expr 'ispositive(a-0)' -prefix full_mask.$subj

• 3dAutomask creates a mask of
contiguous high-intensity voxels (with
some hole-filling) from each imaging run
separately
• 3dMean and 3dcalc are used to
create a mask that is the union of all
the individual run masks
• 3dDeconvolve analysis will be
limited to voxels in this mask

• Will run faster, since less data to process Automask from EPI shown in red

–17–

Script - Scaling
scale each voxel time series to have a mean of 100
(subject to maximum value of 200)
foreach run ($runs)
 3dTstat -prefix rm.mean_r$run pb03.$subj.r$run.blur+orig
 3dcalc -a pb03.$subj.r$run.blur+orig -b rm.mean_r$run+orig \
 -c full_mask.$subj+orig \
 -expr 'c * min(200, a/b*100)' -prefix pb04.$subj.r$run.scale
end

• 3dTstat calculates the mean (through
time) of each voxel’s time series data
• For voxels in the mask, each data point
is scaled (multiplied) using 3dcalc so
that it’s time series will have mean = 100
• If an HRF regressor has max amplitude
= 1, then its β coefficient will represent
the percent signal change (from the mean)
due to that part of the signal model
• Scaled images are very boring to view

• No spatial contrast by design!
• Graphs have common baseline now

–18–

Script - 3dDeconvolve
3dDeconvolve -input pb04.$subj.r??.scale+orig.HEAD -polort 2 \
 -mask full_mask.$subj+orig -basis_normall 1 -num_stimts 10 \
 -stim_times 1 stimuli/stim_times.01.1D 'TENT(0,14,8)' \
 -stim_label 1 ToolMovie \
 -stim_times 2 stimuli/stim_times.02.1D 'TENT(0,14,8)' \
 -stim_label 2 HumanMovie \
 -stim_times 3 stimuli/stim_times.03.1D 'TENT(0,14,8)' \
 -stim_label 3 ToolPoint \
 -stim_times 4 stimuli/stim_times.04.1D 'TENT(0,14,8)' \
 -stim_label 4 HumanPoint \
 -stim_file 5 dfile.rall.1D'[0]' -stim_base 5 -stim_label 5 roll \
 -stim_file 6 dfile.rall.1D'[1]' -stim_base 6 -stim_label 6 pitch \
 -stim_file 7 dfile.rall.1D'[2]' -stim_base 7 -stim_label 7 yaw \
 -stim_file 8 dfile.rall.1D'[3]' -stim_base 8 -stim_label 8 dS \
 -stim_file 9 dfile.rall.1D'[4]' -stim_base 9 -stim_label 9 dL \
 -stim_file 10 dfile.rall.1D'[5]' -stim_base 10 -stim_label 10 dP \
 -iresp 1 iresp_ToolMovie.$subj -iresp 2 iresp_HumanMovie.$subj \
 -iresp 3 iresp_ToolPoint.$subj -iresp 4 iresp_HumanPoint.$subj \
 -gltsym ../misc_files/glt1.txt -glt_label 1 FullF \
 -gltsym ../misc_files/glt2.txt -glt_label 2 HvsT \
 -gltsym ../misc_files/glt3.txt -glt_label 3 MvsP \
 -gltsym ../misc_files/glt4.txt -glt_label 4 HMvsHP \
 -gltsym ../misc_files/glt5.txt -glt_label 5 TMvsTP \
 -gltsym ../misc_files/glt6.txt -glt_label 6 HPvsTP \
 -gltsym ../misc_files/glt7.txt -glt_label 7 HMvsTM \
 -fout -tout -full_first -x1D Xmat.x1D -fitts fitts.$subj -bucket stats.$subj

4 stim types

motion params

GLTs

HRF outputs

–19–

Results: Humans vs. Tools
• Color
overlay:
HvsT
GLT
contrast

• Blue
(upper)
graphs:
Human
HRFs

• Red
(lower)
graphs:
Tool
HRFs

–20–

Script - X Matrix

Via 1grayplot -sep Xmat.x1D

–21–

Script - Random Comments
•-polort 2

★Sets baseline (detrending) to use quadratic polynomials—in each run
•-mask full_mask.$subj+orig

★Process only the voxels that are nonzero in this mask dataset
•-basis_normall 1

★Make sure that the basis functions used in the HRF expansion all
have maximum magnitude=1

•-stim_times 1 stimuli/stim_times.01.1D
 'TENT(0,14,8)'
 -stim_label 1 ToolMovie

★The HRF model for the ToolMovie stimuli starts at 0 s after each
stimulus, lasts for 14 s, and has 8 basis tent functions

o Which have knots (breakpoints) spaced 14/(8-1) = 2 s apart
•-iresp 1 iresp_ToolMovie.$subj

★The HRF model for the ToolMovie stimuli is output into dataset
iresp_ToolMovie.ED.8.glt+orig

–22–

Script - GLTs
• -gltsym ../misc_files/glt2.txt -glt_label 2 HvsT

★ File ../misc_files/glt2.txt contains 1 line of text:
o -ToolMovie +HumanMovie -ToolPoint +HumanPoint
o This is the “Humans vs. Tools” HvsT contrast shown on Results slide

• This GLT means to take all 8 β coefficients for each stimulus class
and combine them with additions and subtractions as ordered:

• This test is looking at the integrated (summed) response to the
“Human” stimuli and subtracting it from the integrated response to
the “Tool” stimuli

•Combining subsets of the β weights is also possible with -gltsym :
• +HumanMovie[2..6] -HumanPoint[2..6]
• This GLT would add up just the #2,3,4,5, & 6 β weights for one

type of stimulus and subtract the sum of the #2,3,4,5, & 6 β weights
for another type of stimulus

o And also produce F- and t-statistics for this linear combination

LC = !"

0

TM !!! "
7

TM
+ "

0

HM
+!+ "

7

HM ! "
0

TP !!! "
7

TP
+ "

0

HP
+!+ "

7

HP

–23–

Script - Multi-Row GLTs
• GLTs presented up to now have had one row

★ Testing if some linear combination of β weights is nonzero;
test statistic is t or F (F =t 2 when testing a single number)

★ Testing if the X matrix columns, when added together to
form one column as specified by the GLT (+ and –), explain a
significant fraction of the data time series (equivalent to above)

• Can also do a single test to see if several different
combinations of β weights are all zero

 -gltsym ../misc_files/glt1.txt
 -glt_label 1 FullF

★ Tests if any of the stimulus classes have nonzero integrated
HRF (each name means “add up those β weights”) : DOF = (4,1292)

★ Different than the default “Full F-stat” produced by
3dDeconvolve, which tests if any of the individual β
weights are nonzero: DOF = (32,1292)

+ToolMovie
+HumanMovie
+ToolPoint
+HumanPoint

4 rows

–24–

Two Possible Formats for -stim_times
• If you don’t use -local_times or -global_times,
3dDeconvolve will guess which way to interpret numbers:
• A single column of numbers (GLOBAL times)

★ One stimulus time per row
★ Times are relative to first image in dataset being at t = 0
★ May not be simplest to use if multiple runs are catenated

• One row for each run within a catenated dataset (LOCAL times)
★ Each time in j th row is relative to start of run #j being t = 0
★ If some run has NO stimuli in the given class, just put a
single “*” in that row as a filler

o Different numbers of stimuli per run are OK
o At least one row must have more than 1 time
 (so that the LOCAL type of timing file can be told from the GLOBAL)

• Two methods are available because of users’ diverse needs
★ N.B.: if you chop first few images off the start of each run,
the inputs to -stim_times must be adjusted accordingly!

o Better to use -CENSORTR to tell 3dDeconvolve just to ignore those points

4.7
9.6
11.8
19.4

4.7 9.6 11.8 19.4
*
8.3 10.6

–25–

